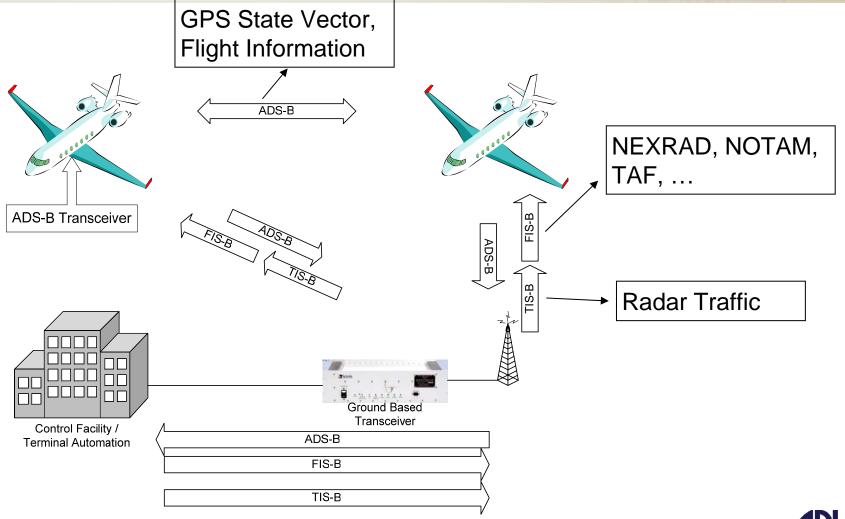


Development of a Portable ADS-B Avionics Transmissions Evaluation Tool

Randall T. Sleight
The Johns Hopkins University Applied Physics Laboratory
Randall.Sleight@jhuapl.edu,

2006 Integrated CNS Technologies Conference & Workshop April 30 - May 3, 2006 Baltimore, Maryland



Outline

- 1. What is Automatic Dependent Surveillance Broadcast (ADS-B)?
- 2. ADS-B Equipage
- 3. Operational Uses
- 4. Need for ADS-B Equipment Testing
- 5. Hardware of the Avionics Test Tool
- 6. Test Functions
- 7. Future Work

ADS-B System Overview

ADS-B Equipage

General aviation traffic in Alaska, 🌋 Johns Hopkins University / Applied Physics Laboratory - CRABS Display File Targets Network Configuration Map Display Add Ons Metrics Help Training aircraft of Embry Riddle Aeronautical University in Prescott, AZ and Daytona, FL **MD State Police, US Park Police** 1 ॐ ٩ 1090 Extended Squitter (1090ES) 闔 Cargo transports of the United Parcel Service (UPS) 2 © Ø F 3D 3600 NM 41°44'53.9"N 142°25'59.0"VV 44.2/62 MB 04/28/06 15:10:38 SystemTime 🌋 Questionable Internet Performance Altitudes presented are based on uncorrected Barometric Pressure

Universal Access Transceiver (UAT)

Operational Uses

- Automation Systems The FAA is completing initial testing for ADS-B integration into various en-route and terminal automation systems.
- Fleet Monitoring The Maryland State Police, Embry Riddle Aeronautical University, and various other entities are utilizing ADS-B to passively monitor their fleets.
- Situational Awareness air to air communication is being utilized for enhanced situational awareness. UPS has equipped the majority of their fleet with 1090ES ADS-B transceivers and cockpit traffic displays

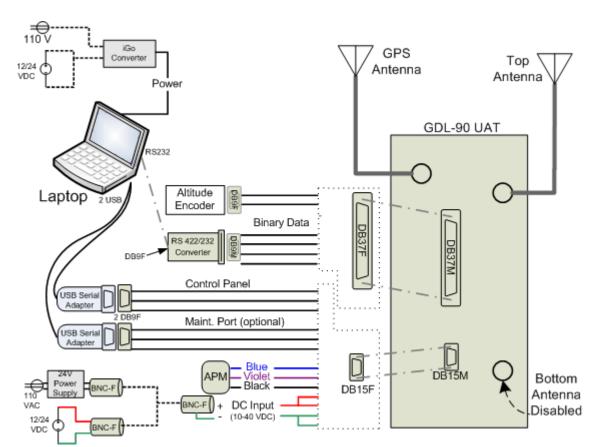
Need for ADS-B Equipment Testing

- There are no available tools to independently verify valid messages are being transmitted
- The current post-installation procedures for the UAT include several quick checks. These include:
 - System self-test
 - GPS interference check.
- These checks are not intended to verify that a MOPS compliant message is being transmitted and that the proper user-defined parameters are configured correctly

Testing Approach

There are 2 general approaches:

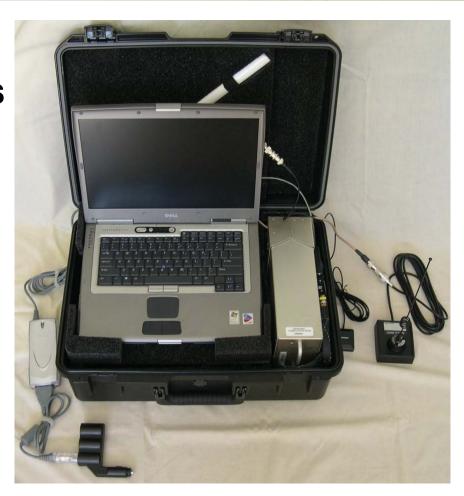
- 1. View ADS-B reports from one or more Ground Broadcast Transceivers (GBT)
 - Valuable when evaluating an entire fleet remotely
 - Test functions are limited to information available in a ADS-B CAT33 report
- 2. View ADS-B messages output directly from a local avionics receiver
 - More complex, requiring additional hardware
 - Test Conductor can visually observe the aircraft
 - Additional cross checks are available by observing the aircraft and communication with the Pilot



Hardware Overview

All COTS hardware (except wiring harnesses and antenna connections)

Serial Connections to PC


DC and AC power source

Compact Local Avionics Monitor (CLAM) Implementation

- Operation from travel case
- Magnetic mount 978Mhz and GPS antennas

Test Functions within CLAM

 Successful Decoding – indicates requirements governing message formats and transmission subsystems are working properly

Message Scheduling

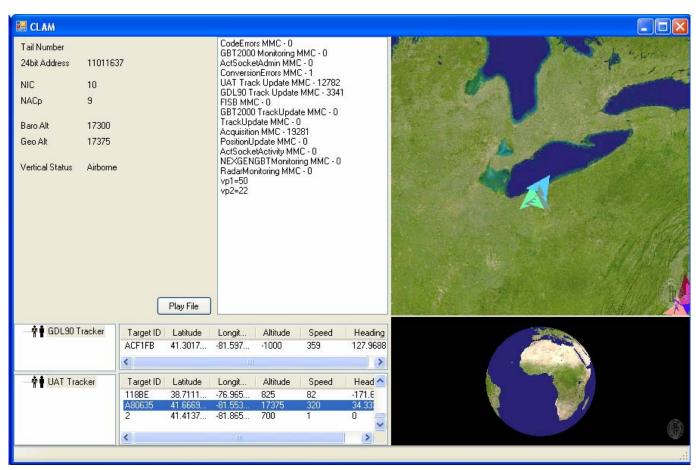
- Verify that the UAT is transmitting the various message payloads
- Verify the proper order of messages are transmitted
- Failures may indicate either the top or bottom antenna is non-functional

Data Quality

- These checks monitor the reported: position integrity, accuracy, and UTC coupling fields
- The UAT own-ship data is used to cross check the quality of ADS-B data.
 (i.e. reported GPS position and barometric altitude)

Data Validity

- Verify the UAT messages are populated with the correct aircraft specific parameters
- Parameters include aircraft length and width, emitter type, and Air/Ground thresholds


Test Functions Requiring Cooperation with Pilot

- Verify 24-bit Address Check Tail Number against the reported 24-bit address using the FAA's Aircraft Registry.
- Ident Verification Activate the "Ident" feature and acknowledge Ident is received for 20 seconds, per DO-282A.
- GPS Interference
 - Key the microphone successively at varying frequencies (as in UAT Installation Manual) and monitor the GPS integrity
 - Enable all aircraft instruments
- Verify Air/Ground State Observe the reported Air/Ground state during departure.
 - Depending on the Aircraft weight there may be specific criteria specifying the speed and altitude at which the UAT must indicate the "Airborne" state

Software User Interface

- ADS-B data output
- User selects source aircraft
- Local traffic display
- Health Status of serial connection

Future Work

Near Term:

- Complete user interface development
- Validation Tests with Pilots and Maintenance Personnel

Pipe Dreams:

- Compliance with "Software Considerations in Airborne Systems and Equipment Certification", DO-178b
- Integrate a 1090 Mhz Extended Squitter Receiver
- Spectrum analysis

